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Abstract. The recurrence condition for irreducible 1-D nearest neighbor random walk is charac-

terized by

lim
n→∞

qn

pn
= ℓ

where qn and pn are the transition probabilities to the left and right respectively at site n. The
random walk is recurrent if ℓ > 1 and transient if ℓ < 1 (see [5, corollary 5.2.1], [1, Theorem

1]). We investigate the case where ℓ → 1 from above and below to understand the asymptotic

boundary of recurrence for 1-D random walk on Z.

1. Introduction

It is known that the recurrence condition for irreducible 1-D nearest neighbor random walk is
characterized by the following quantity:

S :=

∞∑
n=1

n∏
k=1

qk
pk

(1.1)

where qn and pn := 1 − qn are the jump probabilities to the left and right respectively. See for
example [1, theorem 1] or [5, proposition 5.2.2]. We remark that there is a ’lazy’ variant to the
random walk, where it has probability rn > 0 to not jump. The recurrence-transience condition
for such a ’lazy’ walk is the same (see [5, section 5.2]) for walks on both Z and Z+. So to simplify
matters, we restrict ourselves to irreducible ’non-lazy’ birth-death chain .

A random walk is said to be recurrent if S = ∞ and transient otherwise. Performing a ratio
test on S gives the recurrence-transience boundary:

lim
n→∞

qn
pn

= ℓ , ℓ > 1 =⇒ recurrence , ℓ < 1 =⇒ transience. (1.2)

Such a condition can be understood intuitively: if starting the walk at any site m, the ratio of
jumps to left is more probable, i.e. qm+n/pm+n > 1 as n ↑ ∞, then the random walk is less likely
to go further and is being pushed to return to m. Similar qualitative analysis can be done for the
transience case.

We are interested in studying the situation where ℓ in eq. (1.2) is approaching 1. For this reason,
it is convenient to use the following notation:

an :=

n∏
k=1

qn
pn

where
qn
pn

:= 1± hn , hn ↓ 0 , 0 < qn, pn < 1. (1.3)

Note that we limit our scope to non-alternating signs for hn, i.e. sign(hn) = sign(hn−1). With this,
we want to answer the following questions:

(1) Does qn/pn ↓ 1 imply recurrence?

(2) Is it possible if qn/pn ↓ 1, the walk would be transient?

(3) Does qn/pn ↑ 1 imply transience?

(4) Is it possible if qn/pn ↑ 1, the walk would be recurrent?
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2. Main Results

We have the following table where (N/A) = Not available, (R) = Recurrent, (T) = Transient,
(R/T) = The recurrence depends on a constant, (B) = The walk is pushed backward, and (F) =
The walk is pushed forward:

hn > 0 General O(1/ log(n)) O(n−α) O(n−1(log n)α)∑
hn = ∞

∑
hn < ∞ α < 1 α > 1 α = 1 α > 0

(B) 1 + hn R R R R R R N/A
(F) 1− hn N/A R T T R T/R T

Table 1. Summary of Results.

3. Analysis

Proposition 3.1. With the same notation as in eq. (1.3), the following holds:

(1)
∑

hn < ∞ =⇒ recurrence.

(2)
∑

hn = ∞ and qn/pn = 1 + hn =⇒ recurrence.

Proof. By lemma A.1, if
∑

hn converges, then so is an =
∏
(1±hn). If the walk is pushed backward,

i.e. the case 1 + hn, then an converges to a positive value. This implies S = ∞, i.e. the walk is
recurrent. Similarly, in the case 1− hn, an converges to a non-zero value by lemma A.2. The same
conclusion holds. In the second case, if

∑
hn = ∞, then an ≥ 1 +

∑
hn diverges to +∞. □

From proposition 3.1, the remaining case to analyze is

Case (C).
∑

hn = ∞ and qn/pn = 1− hn. (3.1)

The recurrence for such a case can not be determined since
∏
(1 − hn) ↓ 0 does not imply that it

is summable as shown in proposition 3.3 and table 1. In fact, by [3, theorem 5.1.1], any divergent
series

∑
an = ∞ of positive terms can be made smaller without changing its divergent behavior, i.e.∑

an/ (
∑n

k=1 ak) = ∞. This suggests that case (C) must be studied in a case-by-case basis and
may not have a general theory. We study several cases below.

Proposition 3.2. Let hn = 1/ log(n+ 1).

(1) qn/pn = 1 + hn =⇒ recurrence.

(2) qn/pn = 1− hn =⇒ transience.

Proof. The first case follows from proposition 3.1. For the second case, we have
n∏

k=1

(1− hk) ≤
(
1− 1

log(n+ 1)

)n

= exp

(
n log

(
1− 1

log(n+ 1)

))
≤ exp

(
−n

log(n+ 1)

)
≤ exp

(
−
√
n
)
.

Since the right hand side is monotonically decreasing, we may perform the integral test to determine
the convergence of

∑
exp(−

√
n). Observe that∫ ∞

1

exp(−cyα) dy =
1

α c1/α

∫ ∞

1

e−uu(1/α)−1 du ≤ Γ(1/α)

α c1/α
∀ c > 0. (3.2)

Substituting α = 1/2 and c = 1 yields the desired result. □
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Proposition 3.3. [2, Exercise 5.3.4] Let c > 0, pn = 1/2 + c n−α, qn = 1− pn.

(1) α > 1 =⇒ recurrent.

(2) α < 1 =⇒ transient.

(3) α = 1, c ≤ 1/4 =⇒ recurrent.

(4) α = 1, c > 1/4 =⇒ transient.

Proof. Observe that we have

qn
pn

=
1/2− cn−α

1/2 + cn−α
= 1− 4c

nα + 2c
. (3.3)

Case 1. For α > 1, the proof follows from lemma A.1 and proposition 3.1.

Case 2. For α < 1, the product an diverges to 0. Observe that
n∏

k=1

(
1− 4c

kα + 2c

)
≤
(
1− 4c

nα + 2c

)n

= exp

(
n log

(
1− 4c

nα + 2c

))
≤ exp

(
− 4c n1−α

1 + 2c n−α

)
≤ exp

(
− 4c

1 + 2c
n1−α

) (3.4)

The claim holds by similar argument as in eq. (3.2).

Case 3. For α = 1, observe that in eq. (3.3), qn/pn increases to 1 with rate 1/n. In particular,

0 < c ≤ 1

4
=⇒ qn

pn
≥ 1− 1

n+ 2c
≥ 1− 1

n
=

n− 1

n
∀ n > 1 =⇒

n∏
k=1

qk
pk

≥ q1/p1
n

. (3.5)

The right hand side is not summable. Therefore, the series
∑∏

qk/pk diverges, which implies
recurrence. On the other hand, the product

∏
qn/pn can be bounded above as follows

n∏
k=1

qk
pk

= exp

(
n∑

k=1

log

(
1− 4c

k + 2c

))

≤ exp

(
−4c

n∑
k=1

1

k + 2c

)

≤ exp

(
−
∫ n

1

dx

x+ 2c

)4c

= log(1 + 2c)4c
(

1

n+ 2c

)4c

(3.6)

For c > 1/4, the right hand side is summable. □

There are a couple of things that are interesting. First, there is a bifurcation for α = 1 at c = 1/4.
While the effects of c vanishes at ∞, it determines the asymptotic behavior of the walk (whether at
∞ the walk can come back). Since the effects of c is most prominent at small n, this shows how the
jump probabilities at sites close to 0 still affects the overall walk, which makes sense since the chain
is irreducible (can access site 0 from far away).

Second, the case α = 1, c ≤ 1/4 in proposition 3.3 is interesting since the walk is being pushed
forward at all sites, but the walk still returns in finite time almost surely. If we push the walk slightly
further, will it still be recurrent? In the below case, the answer is negative.
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Proposition 3.4. Let c > 0, pn = 1/2 + c n−1(log n)α, qn = 1 − pn. If α > 0, then the walk is
transient.

Proof. Observe that we have

qn
pn

=
1/2− c (log n)α/n

1/2 + c (log n)α/n
= 1− 4c

n/(log n)α + 2c
. (3.7)

We apply the same argument as in eq. (3.6):

n∏
k=1

qk
pk

= exp

(
n∑

k=1

log

(
1− 4c

k/(log k)α + 2c

))

≤ exp

(
−4c

n∑
k=1

1

k/(log k)α + 2c

)

≤ exp

(
−
∫ n

1

dx

x/(log x)α + 2c

)4c

= exp

(
−
∫ logn

0

eu du

u−αeu + 2c

)4c

= exp

(
−
∫ logn

0

uα du

1 + 2 c uαe−u

)4c

≲

(
1

n

)4c(1+α)−1(logn)α

.

(3.8)

The claim holds. □

Note that the right hand side in eq. (3.7) is qn/pn ≈ 1 − n−1(log n)α, which means that the
walk is pushed further forward compared to the case in proposition 3.3. Also, if we set α = 0 in
proposition 3.4 and examine the right hand side of eq. (3.8), we recover the result in proposition 3.3
for the transient case.

Appendix A. Some Facts on Infinite Products and Series

Lemma A.1. Let {hn} be a sequence of non-negative real numbers. The series
∑

hn and the product∏
(1± hn) either both diverge or both converge.

Proof. See [4, theorem 2.2.1 and corollary 2.2.3]. □

Lemma A.2. A convergent infinite product has the value 0 if and only if one of the factors is 0.

Proof. See [3, theorem 3.7.1]. □
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